logoPROFESSIONAL VERSION

Cryptosporidiosis in Animals

ByWilliam Harold Witola, BVM, MSc, PhD, University of Illinois at Urbana-Champaign
Reviewed/Revised Mar 2021

Cryptosporidiosis is a highly prevalent gastrointestinal parasitic disease caused by protozoan species of the genus Cryptosporidium that infect a wide range of animals, including people, throughout the world. Cryptosporidiosis is of considerable importance in neonatal ruminants, in which it is characterized by mild to severe diarrhea, lethargy, and poor growth rates. In infected individuals, Cryptosporidium oocysts can be detected in Ziehl-Neelsen–stained fecal smears. Treatment is supportive, with antidiarrheal remedies and replacement of fluids and electrolytes. Strict hygiene is cardinal to preventing infections.

Etiology and Epidemiology of Cryptosporidiosis in Animals

There are currently 19 species and 40 genotypes of Cryptosporidium. C hominis (formerly C parvum type I) is a specific human pathogen. C parvum (formerly C parvum type II) is zoonotic and infective to many animals, including people and calves. Four cryptosporidial species have been isolated from cattle (C parvum, C andersoni, C bovis, and C ryanae). C andersoni infects the abomasum of older cattle; C bovis and C ryanae are cattle adapted (cattle are the major host). C parvum is a common cause of calf diarrhea, and cryptosporidial oocysts have been detected in the feces of 70% of 1- to 3-week-old dairy calves. Infection can be detected as early as 5 days of age, with the greatest proportion of calves excreting organisms between days 9 and 14. Many reports associate infection in calves with diarrhea occurring at 5–15 days of age.

C parvum is also a common enteric infection in young lambs and goats. Diarrhea can result from a monoinfection but more commonly is associated with mixed infections. Infection can be associated with severe outbreaks of diarrhea, with high case fatality rates in lambs 4–10 days old and in goat kids 5–21 days old.

Cryptosporidial infection has been seen in pigs from 1 week old through market age, a wider age range than in ruminants. Most infections are asymptomatic, and the organism does not appear to be an important enteric pathogen in pigs, although it may contribute to post-weaning malabsorptive diarrhea.

Cryptosporidial infection in foals appears less prevalent and is seen at a later age than in ruminants, with excretion rates peaking at 5–8 weeks old. Infection is not usually detected in yearlings or adults. Most studies indicate that cryptosporidiosis is not common in foals; infections in immunocompetent foals are usually subclinical. Persistent clinical infections are seen in Arabian foals with inherited combined immunodeficiency.

Cryptosporidiosis is also recorded in young deer and can be a cause of diarrhea in artificially reared orphans.

Transmission of Cryptosporidiosis in Animals

The source of cryptosporidial infection is oocysts that are fully sporulated and infective when excreted in the feces. Large numbers are excreted during the patent period, resulting in heavy environmental contamination. Transmission may occur directly from calf to calf, indirectly via fomite or human transmission, from contamination in the environment, or by fecal contamination of the feed or water supply. A periparturient rise in the excretion of oocysts may occur in ewes. C parvum is not host-specific, and infection from other species (eg, rodents, farm cats) via contamination of feed is also possible.

Oocysts are resistant to most disinfectants and can survive for several months in cool and moist conditions. Oocyst infectivity can be destroyed by ammonia, formalin, freeze-drying, and exposure to temperatures < 32°F (0°C) or >149°F (65°C). Ammonium hydroxide, hydrogen peroxide, chlorine dioxide, 10% formol saline, and 5% ammonia are effective in destroying oocyst infectivity. Infectivity in calf feces is reduced after 1–4 days of drying.

Concurrent infections with other enteric pathogens, especially rotavirus and coronavirus, are common, and epidemiologic studies suggest that diarrhea is more severe in mixed infections. Immunocompromised animals are more susceptible to clinical disease than immunocompetent animals, but the relationship between disease and failure of passive transfer of colostral immunoglobulins is not clear. Age-related resistance, unrelated to prior exposure, is seen in lambs but not calves. Infection results in production of parasite-specific antibody, but both cell-mediated and humoral antibody are important in protection, as well as local antibody in the gut of neonates.

Case fatality rates in cryptosporidiosis are generally low unless the condition is complicated by other factors (eg, concurrent infections, energy deficits from inadequate intake of colostrum and milk, chilling from adverse weather conditions).

Pathogenesis of Cryptosporidiosis in Animals

The life cycle of Cryptosporidium consists of six major developmental events. After ingestion of the oocyst, there is excystation (release of infective sporozoites), merogony (asexual multiplication), gametogony (gamete formation), fertilization, oocyst wall formation, and sporogony (sporozoite formation). Oocysts of Cryptosporidium spp can sporulate within host cells and are infective when passed in the feces. Infection persists until the host’s immune response eliminates the parasite. In natural and experimentally produced cases in calves, cryptosporidia are most numerous in the lower part of the small intestine and less common in the cecum and colon. Prepatent periods are 2–7 days in calves and 2–5 days in lambs. Oocysts are usually passed in the feces of calves for 3–12 days.

Clinical Findings of Cryptosporidiosis in Animals

Calves with cryptosporidiosis usually have a mild to moderate diarrhea that persists for several days regardless of treatment. The age at onset is later, and the duration of diarrhea tends to be a few days longer than are seen in the diarrheas caused by rotavirus, coronavirus, or enterotoxigenic Escherichia coli. Feces are yellow or pale, watery, and contain mucus. The persistent diarrhea may result in marked weight loss and emaciation. In most cases, the diarrhea is self-limiting after several days. Varying degrees of apathy, anorexia, and dehydration are present. Only rarely do severe dehydration, weakness, and collapse occur, in contrast to findings in other causes of acute diarrhea in neonatal calves. Case fatality rates can be high in herds with cryptosporidiosis when the calf feeder withholds milk and feeds only electrolyte solutions during the episode of diarrhea. The persistent nature of the diarrhea leads to a marked energy deficit in these circumstances, and the calves die of inanition at 3–4 weeks old.

Lesions

The small intestine shows villous atrophy. Histologically, large numbers of the parasite are embedded in the microvilli of the absorptive enterocytes. In low-grade infections, only a few parasites are present, with no apparent histologic changes in the intestine. The villi are shorter than normal, with crypt hyperplasia and a mixed inflammatory cell infiltrate.

Diagnosis of Cryptosporidiosis in Animals

  • Persistent yellowish, watery, mucoid diarrhea, and lethargy

  • Detection of Cryptosporidium oocysts in Ziehl-Neelsen-stained fecal smears

Diagnosis of cryptosporidiosis is based on detection of oocysts by examination of fecal smears with Ziehl-Neelsen stains, fecal flotation techniques, ELISA, fluorescent-labeled antibodies, a rapid immunochromatographic test, and PCR. Sheather’s flotation sedimentation staining is the most sensitive (83%) and specific (99%) of these techniques, with a relatively low cost per test. This technique requires centrifuging a fecal sample in Sheather’s solution, aspirating the top layer and diluting the fluid in phosphate buffer saline, centrifuging, and placing the sediment on the slide and performing a modified Ziehl-Neelsen technique to look for cryptosporidial oocysts that appear as red spherical-to-ovoid structures (5–6 mm in diameter) by light microscopy. It has been suggested that if the diarrhea is caused by cryptosporidia, there should be 105–107 oocysts/mL of feces. In unstained fresh fecal smears, the oocysts are difficult to detect by normal light microscopy but are readily detected by phase-contrast microscopy as small (5–6 mm in diameter), nonrefractile spherules.

Treatment of Cryptosporidiosis in Animals

  • Symptomatic treatment in form of oral or parenteral fluid and electrolyte replacement

  • Nutritional support and administration of antidiarrheal remedies

There are no currently licensed therapeutics available in the USA for C parvum infection in food animals. Anecdotal reports of success with extra-label use of various compounds have not been replicated in controlled trials. Experimental treatments have, for the most part, been toxic or ineffective. Halofuginone is reported to markedly reduce oocyst output in experimentally infected lambs and naturally and experimentally infected calves; therapy was also reported to prevent diarrhea. Paromomycin sulfate (100 mg/kg/day, PO, for 11 days from the second day of age) proved successful in preventing natural disease in a controlled clinical field trial in goat kids. Nitazoxanide, a drug licensed only for cryptosporidiosis in people, has been shown to reduce disease severity in calves.

Affected calves should receive supportive treatment with fluids and electrolytes, both orally and parenterally, as necessary until recovery occurs. Cows’ whole milk should be given in small quantities several times daily (to the full level of requirement) to optimize digestion and to minimize weight loss. Several days of intensive care and feeding may be required before recovery is apparent. Parenteral nutrition may be considered for valuable calves.

Control of Cryptosporidiosis in Animals

Cryptosporidiosis is difficult to control. Reducing the number of oocysts ingested may reduce the severity of infection and allow immunity to develop. Calving should take place in a clean environment, and adequate amounts of colostrum fed at an early age. Calves should be kept separate without calf-to-calf contact for at least the first 2 weeks of life, with strict hygiene at feeding. Diarrheic calves should be isolated from healthy calves during the course of the diarrhea and for several days after recovery. Great care must be taken to avoid mechanical transmission of infection.

Calf-rearing houses should be vacated and cleaned out on a regular basis; an “all-in/all-out” management system, with thorough cleaning and several weeks of drying between batches of calves, should be used. Rats, mice, and flies should be controlled when possible, and rodents and pets should not have access to calf grain and milk feed storage areas.

Hyperimmune bovine colostrum can reduce the severity of diarrhea and the period of oocyst excretion in experimentally infected calves. Protection is not related to circulating levels of specific antibody but requires a high titer of C parvum antibody in the gut lumen for prolonged periods. Many research groups have attempted to develop effective vaccines against cryptosporidia. Unfortunately, to date, vaccinations have not been effective.

Zoonotic Risk of Cryptosporidiosis in Animals

Infections of cryptosporidiosis in domestic animals may be a reservoir for infection of susceptible people. C hominis and C parvum are considered to be relatively common nonviral causes of self-limiting diarrhea in immunocompetent people, particularly children. In immunocompromised people, clinical disease may be severe. The infection is transmitted predominantly from person to person, but direct infection from animals and waterborne infection from contamination of surface water and drinking water by domestic or wild animal feces can also be important. Animal handlers on a calf farm can be at high risk of diarrhea due to cryptosporidiosis transmitted from infected calves. Immunocompromised people should be restricted from access to young animals and possibly from access to farms.

Key Points

  • Cryptosporidiosis is a gastrointestinal parasitic disease of vertebrate animals and people.

  • The disease is noteworthy in young ruminants, in which it causes mild to severe diarrhea and retarded growth. Cryptosporidium oocysts can be detected in Ziehl-Neelsen–stained fecal smears of infected animals.

  • No fully-effective therapeutic drugs exist, but fluid and electrolyte replacement, as well as nutritional support, are indicated. Control involves strict hygiene to eliminate or reduce contamination of the environment by Cryptosporidium oocysts.

For More Information

  • Tomazic ML, Garro C, Schnittger L. Cryptosporidium. In: Florin-Christensen M, Schnittger L (ed.). Parasitic Protozoa of Farm Animals and Pets. Springer, Cham, Switzerland. 2018;11–54. https://doi.org/10.1007/978-3-319-70132-5

  • Thomson S, Hamilton CA, Hope JC, et al. Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies. Vet Res. 2017;48:42. https://doi.org/10.1186/s13567-017-0447-0

  • Also see pet health content regarding cryptosporidiosis in horses.

quizzes_lightbulb_red
Test your Knowledge nowTake a Quiz!
Download the free Merck Vet Manual App iOS ANDROID
Download the free Merck Vet Manual App iOS ANDROID
Download the free Merck Vet Manual App iOS ANDROID