logoPROFESSIONAL VERSION

Nutrition of Horses

ByAllison J. Stewart, BVSc (Hons), PhD, DACVIM-LAIM, DACVECC, School of Veterinary Science, University of Queensland
Reviewed/Revised Oct 2022

    During the past 20–30 years, there has been an increased awareness of equine nutrition and its importance to the health of the horse. In every stage of life, nutrition is the foundation for equine health and longevity, and a horse's dietary needs change with each life stage. The great varieties of commercial feeds on the market attest to the recognition of different diets for different life stages. Horses must be provided with an adequate supply of energy, protein, vitamins, and minerals and have access to fresh, clean water.

    Adequate fresh water intake is essential for every horse. Storage tanks, troughs, or pails should be placed so the horse can reach in comfortably. Because most horses are reluctant to put their head in a trough or pail below eye level, the water level should be kept high. If water levels get too low, many horses will refuse to drink.

    The optimal temperature for drinking water is 20°–26°C (68°–78°F). Horses will decrease water intake if the water is too cold or too warm. When daytime temperatures exceed 38°C (100°F), water in exposed pipes or hoses will be dangerously hot and should not be used for drinking or bathing.

    The nutrient energy requirement of the horse depends on its level of activity, the energy content of the diet, and the capacity of the animal's digestive system. The size and weight of the newborn foal is influenced by the prepartum nutrition of its dam. Horses fed for rapid body and skeletal growth may develop bone abnormalities or be more prone to lameness conditions. A balanced diet should be fed according to the desired rate of weight gain, but within the sound parameters of good health.

    The best measure of growth in a young horse is weight, and the best description of the size of a horse is a combination of height and weight. A high correlation between the measure of the heart girth and body weight in the horse has been reported. In young, growing horses, monthly measurements are helpful to monitor growth changes.

    There are several reasons to know the weight of horses. Most feed requirements and recommendations are stated in the amount of feed (in kilograms or pounds) the horse should receive based on body weight. In young horses, developmental orthopedic disease, although a multifactorial condition, can be related to rapid growth or imbalances in energy, protein, and minerals.

    The proper balance of protein, calcium, phosphorus, zinc, and copper is important in supporting healthy endochondral ossification and in stabilizing bone collagen and elastin synthesis. The amounts of nutrients required in the diet for normal bone development are dictated by rate of growth. Excessive energy intake contributes to osteochondrosis by decreasing bone density and cortical thickness. Deficiency of protein must be severe to interfere with endochondral ossification. Rapidly increasing protein intake may produce faster bone growth; however, if the diet lacks adequate minerals to support this increased growth, altered endochondral ossification can be seen. Calcium and phosphorus balance affects bone density, rate of growth, and cartilage thickness. Inadequate amounts of copper and zinc have been associated with an increased incidence of osteochondrosis and osteodysgenesis.

    Some of the most common mistakes when feeding young horses include diets with excessive grain and leafy legumes (eg, alfalfa, which results in too high an energy intake), too little zinc or copper to support rate of growth, and an improper calcium:phosphorus ratio. Cereal grains and grass forages are low in calcium, phosphorus, protein, and lysine. Excess energy from cereal grains may be more detrimental than excess energy from grass forages; one reason may be that energy from grain is derived from starch, whereas energy from grass forage comes from microbial production of volatile fatty acids. Starch, but not volatile fatty acids, stimulates insulin secretion, which has been suggested to stimulating hormone changes that contribute to osteochondrosis.1

    Older horses often have dental problems that compromise feed intake and mastication; extruded or soft pelleted feeds are ideal in this circumstance. Hay should be good quality, leafy, and easy to chew. The most variable dietary requirement for any horse is energy. A certain amount of energy is required for maintenance and daily activity. Metabolic demands are increased for such functions as growing, performance activity, or lactation. In some activities, such as racing, jumping, or polo, the energy requirement may be increased by as much as 100%.

    Feeding practices can help treat, control, and prevent other disease conditions. Horses with equine asthma syndrome should be fed as dust-free a feed as possible. Adding water or oil to grains decreases dust. Hay should be thoroughly soaked and fed close to the ground. If complete pelleted feeds are fed, hay can be removed completely from the diet. On sandy soils, hay should be fed off the ground to decrease sand ingestion.

    Dietary management can be used to decrease the risk of gastric ulcers. Alfalfa (lucerne) hay, with its high calcium and protein concentration, acts as a buffering antacid and has a protective effect on the nonglandular squamous mucosa. Small hay meals, fed frequently, or access to pasture also decrease the risk of gastric ulceration.

    Nutritional management for Quarter horses with hyperkalemic periodic paralysis is focused on decreasing dietary intake of potassium and increasing renal potassium losses. Dietary manipulation includes avoiding high-potassium feeds such as alfalfa hay, brome grass, canola oil, soybean meal or oil, and sugar or beet molasses and replacing them with timothy or Bermuda grass, beet pulp, and grains such as oats, corn, wheat, or barley. Affected horses should be exercised regularly and have access to pasture.

    Heavily muscled breeds of horses, including Quarter horses, draft horses, and warmblood breeds, are prone to myopathies associated with increased muscle glycogen stores and polysaccharide storage inclusions in type II muscle fibers. Successful management of this condition, known as polysaccharide storage myopathy, focuses on increasing the fat content of the diet and eliminating or decreasing carbohydrate intake.

    Management practices to decrease the risk of impaction include ad lib access to fresh water, adequate exercise, good quality feed, and good dental care. If impaction has been a recurrent problem, poorly digestible feeds (eg, mature forages) should be replaced with low-fiber, highly digestible forages (eg, growing grass or legume hays). A complete pelleted or extruded feed helps maintain soft feces.

    Grazing lush pastures or consuming grain or hay with a high nonstructural carbohydrate content has long been associated with the development of laminitis. Anecdotal observations indicate that pasture-associated laminitis occurs at times of rapid grass growth (eg, spring and early summer and in the fall after rainfall) that favor accumulation of certain carbohydrates such as fructans, starches, and sugars. Some horses and ponies may be more susceptible to pasture-associated laminitis because of genetic predisposition and other metabolic factors, including obesity, peripheral insulin resistance, and hyperinsulinemia. Strategies to decrease the risk of laminitis focus on limiting the intake of nonstructural carbohydrates such as fructans from pasture and other feedstuffs.

    Horses and ponies with a history of recurrent laminitis should have limited pasture access during periods of rapid grass growth, such as spring and early summer. Some ponies with equine metabolic syndrome (EMS) cannot tolerate any unrestricted time on pasture. Nonstructural carbohydrate content also tends to increase during the morning, reaches maximal values in the afternoon, and then declines overnight. Therefore, a popular recommendation is to turn susceptible individuals out on pasture overnight or during the early morning and to remove them from pasture by midmorning.

    However, if pastures are lush, less than 1 hour of grass may be sufficient, or grazing muzzles may be recommended. Stemmy, mature pastures should be avoided, because mature grasses may contain more fructans. Turning susceptible individuals onto pasture that has been exposed to low temperatures in conjunction with bright sunlight (eg, as in the fall after a flush of growth followed by cool sunny days) should be avoided, because colder temperatures decrease grass growth and result in concentration of the fructan.

    If feeding forage, testing the nonstructural carbohydrate content is recommended, with values < 10% considered appropriate for equids with EMS. Grass hay can vary between 4% and 19%, while lucerne is usually between 9% and 14%. Soaking hay and discarding the liquid before feeding may help decrease the amount of fructans being fed; however, water-soluble vitamins will need to be supplemented. Grain, sweet feeds, and treats like apples, carrots, and bread should be avoided.

    The terms mature, senior, and geriatric refer to horses that have completed their growth cycle. However, because aging is a continuous process, there is no discrete age range for each category. Improved methods of overall care, management, and diet have enabled horses to live into their 20s or 30s. This increased longevity means they often continue to participate in a variety of leisure or competitive activities as they approach and reach their 20s.

    Good management of still-active older horses means recognition and evaluation of conditions that occur with age (eg, arthritis, pituitary pars intermedia dysfunction, laminitis, navicular disease, kidney or liver dysfunction), followed by therapeutic management and special dietary considerations. Horses with liver or kidney conditions should not be fed legume hays or fat-supplemented feeds. Horses confined to stalls most of the time are more prone to intestinal problems and development of undesirable behaviors.

    References

    1. Fradinho MJ, Mateus L, Bernardes N, Bessa RJB, Caldeira RM, Ferreira-Dias G (2019) Growth patterns, metabolic indicators and osteoarticular status in the Lusitano horse: A longitudinal study. PLoS ONE 14(7): e0219900. doi.org/10.1371/journal.pone.0219900

    quizzes_lightbulb_red
    Test your Knowledge nowTake a Quiz!
    Download the free Merck Vet Manual App iOS ANDROID
    Download the free Merck Vet Manual App iOS ANDROID
    Download the free Merck Vet Manual App iOS ANDROID