logoPROFESSIONAL VERSION

Overview of Mycotoxicoses in Animals

ByMichelle S. Mostrom, DVM, MS, PhD, DABVT, DABT, NDSU Veterinary Diagnostic Laboratory Toxicology
Reviewed/Revised Nov 2021

For discussion of mycotoxicoses in poultry, see Mycotoxicoses in Poultry.

Acute or chronic toxicoses in animals can result from exposure to feed or bedding contaminated with toxins produced during growth of various saprophytic or phytopathogenic fungi or molds on cereals, hay, straw, pastures, or any other fodder. These toxins are not consistently produced by specific molds and are known as secondary (not essential) metabolites that are formed under conditions of stress to the fungus or its plant host.

Some principles that characterize mycotoxic disease include:

  • The cause of mycotoxic disease may not be immediately identified.

  • Mycotoxins are not transmissible from one animal to another. Often, young, immature animals are more at risk.

  • Treatment with drugs or antimicrobials has little effect on the course of the disease. The first course of action is to stop the exposure to contaminated feed.

  • Outbreaks are often seasonal, because particular climatic sequences may favor fungal growth and toxin production.

  • Investigation of the outbreak indicates specific association with a particular feed.

  • Large numbers of fungi or their spores found on examination of feedstuffs does not necessarily indicate that toxin production has occurred. Absence of fungi or their spores does not exclude mycotoxicosis (eg, feed storage or preparation conditions, such as acid treatment or pelleting, can destroy fungi while the heat-tolerant mycotoxin persists).

Most veterinary mycotoxicoses occur in large-animal species, but important outbreaks can happen in pets and exotic animals. Especially important in diagnosis is the presence of a disease documented to be caused by a known mycotoxin, combined with detection of the mycotoxin in either feedstuffs or animal tissues.

Sometimes, multiple mycotoxins may be present in feedstuffs, and their different toxicological properties may cause clinical signs and lesions inconsistent with those evident when animals are dosed experimentally with pure, single mycotoxins. Some mycotoxins are immunosuppressive, increasing susceptibility to secondary infections that are more obvious than the primary disease. When immunosuppression by a mycotoxin is suspected, differential diagnoses must be carefully established by thorough clinical and historical evaluation, examination of production records, and appropriate diagnostic testing.

Mycotoxicoses are generally not successfully treated after diagnosis. A preventive approach with recognition of risk factors and avoidance or reduction of exposure is preferred. Best management practices are aimed at prevention of the occurrence of mycotoxins, inactivation of the preformed toxin in grain or feed, and adsorption or inactivation of the toxin in the GI tract; metabolism of some mycotoxins, especially in ruminant animals, can be supported by use of feed ingredients of good nutritional quality. Testing of suspect grain at harvest, maintaining clean and dry storage facilities, using acid additives (eg, propionic acid) to control mold growth in storage, ensuring effective air exclusion in silage storage, and reducing storage time of prepared feeds are established procedures to prevent mycotoxin formation. Acidic additives control mold growth but do not destroy preformed toxins.

There are no specific antidotes for mycotoxins; removal of the source of the toxin (ie, the moldy feedstuff) eliminates further exposure. The absorption of some mycotoxins (eg, aflatoxin) has been effectively prevented by aluminosilicates. Alternatively, feed with known mycotoxin concentrations can be fed to less susceptible species, with the caveat that some mycotoxins such as aflatoxin could result in violative residues in food in the absence of illness. When contaminated feed is blended with uncontaminated feed, care must be taken to prevent further mold growth by the toxigenic contaminants. This may be accomplished by thorough drying or by addition of organic acids (eg, propionic acid).

Important mycotoxic diseases occur in domestic animals worldwide ().

Table
Table

Managing a Suspected Mycotoxicosis

When mycotoxicosis is suspected, corrective actions could include the following:

  • Change the feed even when a specific mycotoxin is not identified.

  • Thoroughly inspect storage bins, mixing equipment, and feeders for caking, molding, or musty odors.

  • Remove contaminated feed and clean equipment and sanitize with hypochlorite (laundry bleach) to reduce contaminating fungi.

  • Analyze for known mycotoxins.

  • Use spore counts or fungal cultures for some indication of potential mycotoxin production.

  • If storage conditions or grain moisture are adverse, use a mold inhibitor to reduce or delay mold growth (remember, mold inhibitors do not destroy preformed toxins).

  • Use a mycotoxin adsorbent if appropriate for the mycotoxin suspected.

  • Save a representative sample of each diet mixed until animals are at 1 month beyond when the feed was consumed.

  • Take a representative sample of suspect feed after milling by passing a cup through a moving auger stream at frequent intervals, mixing samples thoroughly, and saving a 4.5-kg (10-lb) sample for analysis. Alternatively, use probe sampling of recently blended grain in bins or trucks at five locations in each structure for each 6 feet of depth. Freeze or dry samples, and submit for analysis in a paper bag (not plastic). Dry samples are preferable in a paper bag to prevent condensation during transport and storage. Samples should be dried at 176°–194°F (80°–90°C) for ~3 hours to reduce moisture to 12%–13%. If mold studies are to be done, dry at 140°F (60°C) for 6–12 hours to preserve fungal activity.

Mycotoxin Adsorbents

Adsorption of mycotoxins in contaminated feeds is an area of active research. Aflatoxins are effectively adsorbed by the aluminosilicate feed additives. However, this group of adsorbents are of little or limited use for other mycototoxins. Trichothecene mycotoxins, including deoxynivalenol, are not readily adsorbed by common feed additives. The aluminosilicate adsorbents that are effective against aflatoxins have limited or no benefits against trichothecenes. Sodium bentonite is an effective adsorbent for aflatoxins in cattle and poultry but appears ineffective for trichothecenes and zearalenone.

The polymeric glucomannan adsorbents (GM) are useful for poultry growth and feed consumption with low natural concentrations of aflatoxin, ochratoxin, T-2 toxin, and zearalenone. When added to Fusarium-contaminated diets, glucomannan adsorbents reduces the number of stillborn piglets. Glucomannan adsorbent efficacy for ruminants has been variable in different studies. Cholestyramine has been an effective binder of fumonisins and zearalenone in vitro and for fumonisins in animal experiments, but response in cattle is unknown. Although various adsorbents are allowed for animal feed in various countries, none is FDA-approved in the US.

For More Information

quizzes_lightbulb_red
Test your Knowledge nowTake a Quiz!
Download the free Merck Vet Manual App iOS ANDROID
Download the free Merck Vet Manual App iOS ANDROID
Download the free Merck Vet Manual App iOS ANDROID